

DEPARTMENT OF MATHEMATICS S.4 MATHEMATICS-2020 **REVISION QUESTIONS** VECTORS

- Points A and B have coordinates (0, -1) and (-6, 7) respectively. Find: 1.
 - AB, (a)
 - magnitude of **AB**. (b)
- Two points P(5,2) and Q(2,4) are in a plane. Find the 2.
 - coordinate of M, the midpoint of \mathbf{PQ} , (a)
 - (04 marks)(b) $|\mathbf{OM}|$, where O is the origin.

3. If
$$\mathbf{a} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 11 \\ 3 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 10 \\ 9 \end{pmatrix}$, find:
(i) $\frac{1}{2}(\mathbf{a} - \mathbf{c})$,
(ii) $|\mathbf{a} + \mathbf{b} - \mathbf{c}|$. (05 marks)

P and Q have position vectors $\begin{pmatrix} 2t \\ t+1 \end{pmatrix}$, $\begin{pmatrix} t+1 \\ -(t+2) \end{pmatrix}$ respectively. If 4. $|\mathbf{OP}| = |\mathbf{OQ}|$, show that $3t^2 - 4t - 4 = 0$ and hence find the possible values of t. (05 marks)

- In a parallelogram OBCA, $\mathbf{OA} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $\mathbf{OB} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, where O is the 5.origin. Find
 - (i) BC,
 - the coordinates of C. (ii)

(04 marks)

(04 marks)

- 6. Given that $\begin{pmatrix} a \\ 3 \end{pmatrix} + \begin{pmatrix} -3 \\ b \end{pmatrix} = \begin{pmatrix} 8 \\ 5 \end{pmatrix}$, find values of *a* and *b*. (04 marks)
- 7. Given vectors $\mathbf{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 18 \\ 3 \end{pmatrix}$, find the values of the constants p and q such that $\mathbf{c} = p\mathbf{a} + q\mathbf{b}$. (04 marks)

8. If
$$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 12 \\ -5 \end{pmatrix}$, find numbers *m* and *n* such that $m\mathbf{a} + n\mathbf{b} = \mathbf{c}$. (04 marks)

9. Given that S(-2, 6) and T(3, 3) are two points, find the coordinates of R if $\mathbf{OR} = 4\mathbf{OS} + \frac{1}{3}\mathbf{OT}$ and O is the origin. (04 marks)

10. Given that $\mathbf{OA} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$, $\mathbf{OB} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$ and M is a point on AB such that AM : MB = 1 : 1; find:

- (a) **AM**.
- (b) **OM**. (04 marks)

11. (a) Given the vectors
$$\mathbf{a} = \begin{pmatrix} -2 \\ 7 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 8 \\ 11 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}$, find:

- (i) $\mathbf{a} + 2\mathbf{b} + \mathbf{c}$.
- (ii) length of $\mathbf{a} + 2\mathbf{b} + \mathbf{c}$.
- (b) The position vectors of D and E are $\begin{pmatrix} 6\\4 \end{pmatrix}$ and $\begin{pmatrix} 12\\-11 \end{pmatrix}$ respectively. M is on DE such that DM : DE = 2 : 3. Find
 - (i) **DE**,
 - (ii) \mathbf{DM} ,
 - (iii) the position vector of M.
- 12. Given that $\mathbf{p} = 3\mathbf{a} \mathbf{b}$ and $\mathbf{q} = 2\mathbf{a} 3\mathbf{b}$, find the numbers x and y such that $x\mathbf{p} + y\mathbf{q} = \mathbf{a} + 9\mathbf{b}$. (04 marks)
- 13. Given that $\mathbf{p} = 2\mathbf{a} 5\mathbf{b}$, $\mathbf{q} = \mathbf{a} + 2\mathbf{b}$ and $\mathbf{r} = \mathbf{a} 16\mathbf{b}$, find the numbers *m* and *n* such that $m\mathbf{p} + n\mathbf{q} = \mathbf{r}$. (04 marks)

- 14. Show that points A(1,2), B(2,4) and C(4,8) are collinear. (04 marks)
- 15. Show that points A(1,1), B(2,3) and C(5,9) lie on a straight line. (04 marks)
- 16. If points P(1,1), Q(2,4) and R(p,-1) are collinear find the value of p. (04 marks)
- 17. If $\mathbf{OP} = 2\mathbf{a} 5\mathbf{b}$, $\mathbf{OQ} = 5\mathbf{a} \mathbf{b}$ and $\mathbf{OR} = 11\mathbf{a} + 7\mathbf{b}$, show that P, Q and R are collinear and state the ratio PQ : QR. (04 marks)
- 18. The position vectors of P, Q and R are $\mathbf{a} 2\mathbf{b}$, $2\mathbf{b}$ and $-4\mathbf{a} + k\mathbf{b}$ respectively. If P, Q and R are collinear, find the value of k. What is the ratio PQ : QR? (04 marks)
- 19. If OP = a + b, OQ = ka and OR = 7a 2b, find the value of k if Q lies on PR.

The position vectors of P, Q and R are $2\mathbf{a} - \mathbf{b}$, $t(\mathbf{a} - \mathbf{b})$ and $\mathbf{a} + \mathbf{b}$ respectively. Find the value of t if PQR is a straight line. State the ratio PQ : QR.

(04 marks)

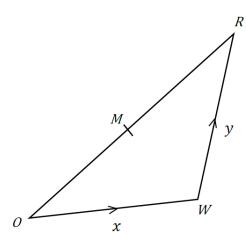
21. Show that the points A, B and C with position vectors $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ respectively are collinear. (04 marks)

22. If the vectors
$$\mathbf{a} = \begin{pmatrix} m \\ -2 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$ are parallel, find the value of m .
(04 marks)

- 23. The position vectors of A and B are $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} t \\ 1 \end{pmatrix}$ respectively. Find the value of t if OAB is a straight line, where O is the origin. (04 marks)
- 24. *P* and *Q* divide the sides *BC* and *AC* respectively of $\triangle ABC$ in the ratio 2 : 1. If AB = a and AC = b, find
 - (a) \mathbf{QP} and

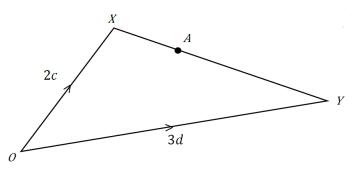
20.

- (b) Show that \mathbf{QP} is parallel to \mathbf{AB} . (08 marks)
- 25. In the traingle ORW below, OW = x, WR = y. *M* is the midpoint of *OR*.

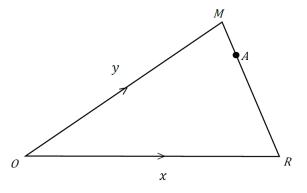


Find interms of \mathbf{x} and \mathbf{y}

- (a) **OR**. (b) **OM**. (c) **WM**. (06 marks)
- 26. In the traingle OXY below, OX = 2c, OY = 3d. A is the point on XY such that XA : AY = 2 : 3



- (a) Find **XY** interms of **c** and **d**
- (b) Show that **OA** is parallel to the vector $\mathbf{c} + \mathbf{d}$. (04 marks)
- 27. In the traingle OMR below, OR = x, OM = y. A is the point on MR such that MA : AR = 3 : 1



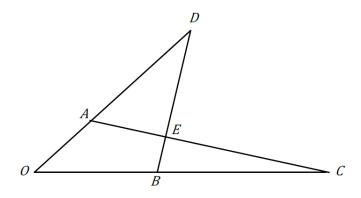
Find interms of \mathbf{x} and \mathbf{y}

(a) **RM**.

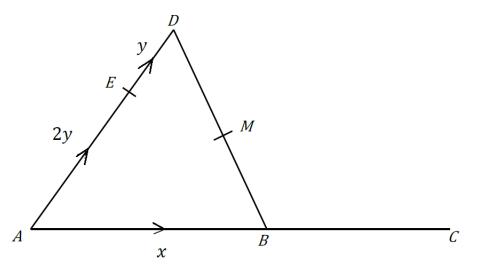
OA. (06 marks)

(b)

28. In the below, $\mathbf{OA} = 4\mathbf{x}$, $\mathbf{OB} = 4\mathbf{y}$. *OAD*, *OBC* and *BED* are all straight lines. AD = 2OA and BE : ED = 1 : 3.



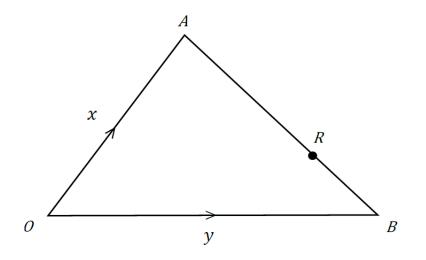
- (a) Find, in terms of **x** and **y**, the vectors which represent:
 - (i) **BD**. (ii) **AE**.
- (b) Given that $\mathbf{BC} = 8\mathbf{y}$. Show that points A, E and C lie on a straight line. ($\theta 6 \text{ marks}$)
- 29. In the triangle ABD, AB = x, AE = 2y and ED = y. *E* is a point on *AD*, *B* is the midpoint of *AC* and *M* is the midpoint of *DB*.



(a) Find, in terms of **x** and **y**, the vectors which represent:

(i) **DA**. (ii) **DB**. (iii) **AM**.

- (b) Show that points E, M and C lie on a straight line. (08 marks)
- 30. In the traingle OAB below, OA = x, OB = y. R is the point on AB such that AR : RB = 3 : 2

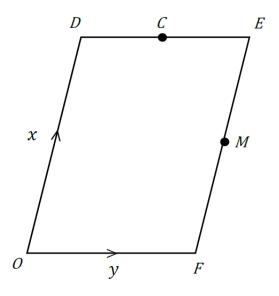


Find interms of ${\bf x}$ and ${\bf y}$

(a) **AB**.

(b) Show that
$$\mathbf{OR} = \frac{1}{5}(2\mathbf{x} + 3\mathbf{y}).$$
 (06 marks)

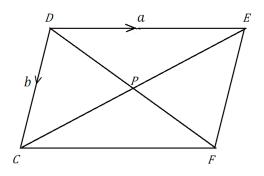
31. In the parallelogram ODEF below, OD = x, OF = y. M is the midpoint of FE. C is the midpoint of DE.



(a) Express, in terms of \mathbf{x} and/or \mathbf{y} , the vectors:

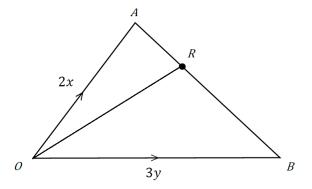
(i) **ME**. (ii) **MC**.

- (b) Show that \mathbf{FD} is parallel to \mathbf{MC} . (06 marks)
- 32. In the parallelogram CDEF below, $\mathbf{DE} = \mathbf{a}$, $\mathbf{DC} = \mathbf{b}$. DF and EC are diagonals of parallelogram DEFC and they intersect at point P.



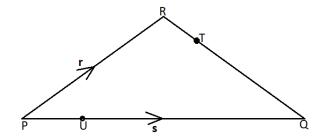
Express, in terms of \mathbf{a} and \mathbf{b} , the vectors:

- (a) \mathbf{DF} . (b) \mathbf{EC} . (c) \mathbf{DP} . (06 marks)
- 33. In the traingle OAB below, OA = 2x, OB = 3y. R is the point on AB such that AR : RB = 2 : 3



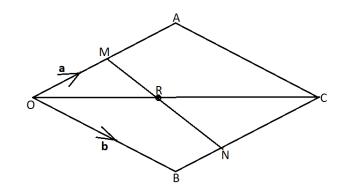
Find interms of \mathbf{x} and \mathbf{y}

- (a) **AB**.
- (b) Show that **OR** is parallel to the vector $\mathbf{x} + \mathbf{y}$. (07 marks)
- 34. In the figure below, vector, $\mathbf{PQ} = \mathbf{s}$, $\mathbf{PR} = \mathbf{r}$, 2QT = 3TR and PU : UQ = 2 : 3.

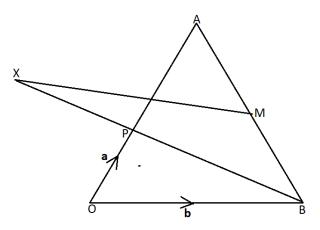


- (a) Find in terms of **r** and **s**, vectors
 - (i) \mathbf{QR} , (ii) \mathbf{QT} , (iii) \mathbf{PT}
- (b) Show that \mathbf{PT} is parallel to \mathbf{PR} . (12 marks)

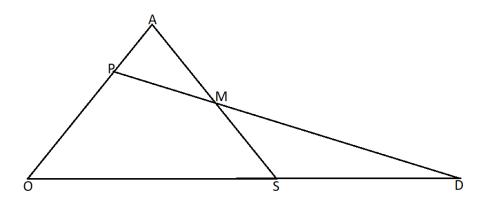
35. The diagram below shows a parallelogram OACB. The position vectors of A and B are **a** and **b** respectively.



- (a) If OM = MA and NC = 2BN, find in terms of **a** and **b** (i) NC.
 (ii) NA.
 (iii) MN.
- (b) Given that $\mathbf{OR} = \lambda \mathbf{OC}$ and $\mathbf{MR} = \mu \mathbf{MN}$, find the value of λ and μ . Hence show that $\mathbf{AR} = \frac{1}{7}(3\mathbf{b} - 4\mathbf{a})$. (12 marks)
- 36. In the below, OP = a, OA = 3a and OB = b. *M* is the midpoint of *AB*.



- (a) Find, in terms of **a** and **b**
 - (i) **BP**. (ii) **AB**. (iii) **MB**.
- (b) If X lies on BP produced such that $\mathbf{BX} = k\mathbf{BP}$, express \mathbf{MX} in terms of \mathbf{a}, \mathbf{b} and k.
- (c) Find the value of k if **MX** is parallel to **BO**. (12 marks)
- 37. In the below, $\mathbf{OA} = \mathbf{a}$, $\mathbf{OS} = \mathbf{b}$ and M is the midpoint of AB. The point P divides OA in the ratio 2 : 1, and PM produced meets OS produced at D.



(a) Find, in terms of **a** and **b**

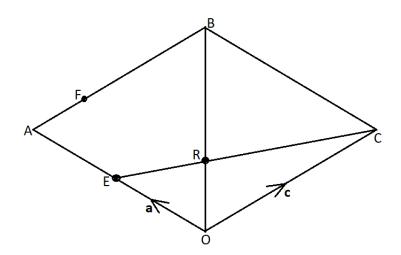
(i) AS. (ii) PA. (iii) PM.

(b) Given that $\mathbf{PD} = k\mathbf{PM}$ and $\mathbf{OD} = t\mathbf{OS}$, find the value of k and t. (12 marks)

38. The position vectors of the points A and B are **a** and **b** respectively. The point P lies on OA produced such that OP = 3OA. Point Q lies on OB such that $OQ = \frac{1}{3}OB$. The lines AB and PQ meet at C

- (a) (i) Express **PQ** in terms of vectors **a** and **b**.
 - (ii) If also $PC = \mu PQ$, express OC in terms of μ , **a** and **b**.
 - (iii) If also $AC = \lambda AB$, express OC in terms of λ , **a** and **b**. Hence find the value of λ and μ .
- (b) Show that **AQ** is parallel to **PB**. (12 marks)
- 39. In a triangle ABC, M and D are mid-points of AC and CN respectively. N is a point on AB such that AN = 3NB.
 - (a) If AB = p and AC = q, express the following vectors in terms of vectors p and q;
 - (i) **AM**. (ii) **AN**. (iii) **ND**.
 - (b) Show that **MD** is parallel to **AB** and that MD : AB = 3 : 8. (12 marks)

40. In the diagram below, OABC is a parallelogram. OA = a, OC = c and E is the midpoint of OA.



If OR : RB = 1 : 2 and AF : FB = 1 : 5,

(a) in terms of vectors **a** and **c** the vectors

(i) **FC**. (ii) **FR**.

(b) determine the ratio of ER : RC.

41. In a parallelogram ABCD, AB = 2a and AD = b. A point E is such that AE = 2b. Lines AC and BD intersect at F. Lines CD and BE intersect at G. DC = 2DG. Find in terms of vectors a and b

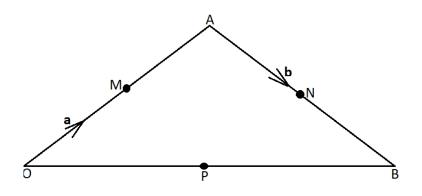
- (a) **EC**, (c) **BG**,
- (b) \mathbf{AG} , (d) \mathbf{FG} . (12 marks)
- 42. In a triangle ABC, E divides OA in the ratio 6:1. D divides AB in the ratio 1:2. Point C is on OB produced such that OC:OB = 3:2. Given that OA = a and OB = b,
 - (a) find in terms of vectors **a** and **b**;
 - (i) OD, (iii) ED, (ii) AC, (iv) DC.
 - (b) determine the ratio ED : DC. What can you conclude about the points E, D and C. (12 marks)

(12 marks)

- 43. The points P and Q have position vectors \mathbf{p} and \mathbf{q} respectively. The point R divides PQ externally in the ratio 3 : 1. S is a point on a straight line with R such that 3RS = 2PQ. Find the
 - (a) position vectors of R and S
 - (b) vectors \mathbf{QS} and \mathbf{PS} in terms of \mathbf{p} and \mathbf{q} .
 - (c) ratio PS: RS.

(12 marks)

44. The vectors **OA**, **AB** and **BO** form a triangle OAB with O the origin. If **OA** = **a**, **AB** = **b**, and the points M, N and P are midpoints of OA, AB and OB respectively.



(a) Determine in terms of vectors **a** and **b**

- (i) \mathbf{AP} , (ii) \mathbf{NP} , (iii) \mathbf{MB} .
- (b) Show that **MN** is parallel to **OB**.
- (c) determine the ratio of MN:OB.

(12 marks)

-END-